On correlation functions of characteristic polynomials for chiral Gaussian Unitary Ensemble

نویسندگان

  • Yan V Fyodorov
  • Eugene Strahov
چکیده

We calculate a general spectral correlation function of products and ratios of characteristic polynomials for a N × N random matrix taken from the chiral Gaussian Unitary Ensemble (chGUE). Our derivation is based upon finding a Itzykson-Zuber type integral for matrices from the non-compact manifold Gl(n, C)/U(1)× ... × U(1) (matrix Macdonald function). The correlation function is shown to be always represented in a determinant form generalising the known expressions for only positive moments. Finally, we present the asymptotic formula for the correlation function in the large matrix size limit.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The solution of a chiral random matrix model with complex eigenvalues

We describe in detail the solution of the extension of the chiral Gaussian Unitary Ensemble (chGUE) into the complex plane. The correlation functions of the model are first calculated for a finite number ofN complex eigenvalues, where we exploit the existence of orthogonal Laguerre polynomials in the complex plane. When taking the large-N limit we derive new correlation functions in the case of...

متن کامل

A note on biorthogonal ensembles

Abstract. We consider ensembles of random matrices, known as biorthogonal ensembles, whose eigenvalue probability density function can be written as a product of two determinants. These systems are closely related to multiple orthogonal functions. It is known that the eigenvalue correlation functions of such ensembles can be written as a determinant of a kernel function. We show that the kernel...

متن کامل

Eigenvalue Separation in Some Random Matrix Models

The eigenvalue density for members of the Gaussian orthogonal and unitary ensembles follows the Wigner semi-circle law. If the Gaussian entries are all shifted by a constant amount c/(2N)1/2, where N is the size of the matrix, in the large N limit a single eigenvalue will separate from the support of the Wigner semi-circle provided c > 1. In this study, using an asymptotic analysis of the secul...

متن کامل

The Complex Laguerre Symplectic Ensemble of Non-Hermitian Matrices

We solve the complex extension of the chiral Gaussian Symplectic Ensemble, defined as a Gaussian two-matrix model of chiral non-Hermitian quaternion real matrices. This leads to the appearance of Laguerre polynomials in the complex plane and we prove their orthogonality. Alternatively, a complex eigenvalue representation of this ensemble is given for general weight functions. All k-point correl...

متن کامل

On Permanental Polynomials of Certain Random Matrices

The paper addresses the calculation of correlation functions of permanental polynomials of matrices with random entries. By exploiting a convenient contour integral representation of the matrix permanent some explicit results are provided for several random matrix ensembles. When compared with the corresponding formulae for characteristic polynomials, our results show both striking similarities...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008